New: WRI statement on diversity, equity and inclusion

You are here

food

blog post

A new interactive map from WRI’s Aqueduct project reveals that more than 25 percent of the world’s agriculture is grown in areas of high water stress. This figure doubles when looking at irrigated cropland, which produces 40 percent of global food supply.

This analysis highlights the tension between water availability and agricultural production. Finding a balance between these two critical resources will be essential—especially as the global population expands.

blog post

Earlier this year, WRI analysis found that one in four food calories produced go uneaten. Yesterday a group of experts took the first step toward helping to curb this massive amount of food loss and waste.

At the Global Green Growth Forum in Copenhagen, WRI announced the launch of a process to develop a global standard for measuring food loss and waste. This standard, known as the “Global Food Loss and Waste Protocol,” will enable countries and companies to measure and monitor the food loss and waste that occur within their boundaries and value chains in a credible, practical, and consistent manner.

blog post

Innovative farmers are beginning to demonstrate how agroforestry and other relatively simple practices can significantly boost food production in Africa’s drylands. In fact, according to a new WRI working paper, improving land and water management on just 25 percent of sub-Saharan Africa’s 300 million hectares of prime cropland would result in an additional 22 million tons of food. This strategy could go a long way towards sustainably feeding Africa—and the world.

publication

The world’s food production systems face enormous challenges. Millions of farmers in developing countries are struggling to feed their families as they contend with land degradation, land use pressures, and climate change.

blog post

If you want to know how to grow crops in the face of climate change, drought, and land degradation, ask Ousséni Kindo, Ousséni Zoromé, or Yacouba Sawadogo—three farmers in Burkina Faso’s Yatenga region.

Policy makers, researchers, and NGO representatives gathered earlier this year at a workshop in Ouagadougou, Burkina Faso to discuss strategies on combating food insecurity and adapting to climate change. Attendees at the event—organized by the group Network for Participatory Approaches to Research and Planning (Réseau MARP Burkina)—heard from several of Burkina Faso’s farmers on how they produce food on degraded lands. The farmers and participants provided interesting insights into climate-smart agriculture methods—including how to scale up these practices throughout the nation.

blog post

The United Nations’ new population growth projections show that the world is set to reach nearly 9.6 billion by 2050. This growth holds serious implications for global food security. Absent other effective measures to control dietary shifts and reduce food loss and waste, the world will need to produce about 70 percent more food annually by 2050 to meet global demands. That is a big task, and even harder to do without converting millions more hectares of forests into farmland, contributing to climate change.

data visualization

How can the world feed more than 9 billion people by 2050 in a manner that advances economic development and reduces pressure on the environment? Answering it requires a “great balancing act” of three needs—each of which must be met simultaneously.

blog post

President Obama is in Africa this week to discuss development, investment, health, and, notably, food security. The trip comes on the heels of the president’s groundbreaking announcement of a U.S. Climate Action Plan. So it’s a fitting time for Obama and other global leaders to take notice of a strategy that addresses both climate change and food security in Africa—re-greening.

Re-greening—a process where African farmers manage and protect trees that grow on their farms, rather than cutting them down—is already beginning to transform the continent’s drylands. Supporting and scaling up the low-tech process can not only increase crop yields in drought-prone regions, it can mitigate climate change and reduce rural poverty.

The History of Re-greening in Africa’s Drylands

Re-greening in Africa first garnered international attention back in 2007, when the New York Times published a front page article entitled “In Niger, Trees and Crops Help Turn Back the Desert.” Lydia Polgreen, who was the NYT’s West Africa bureau chief in those days, had visited Niger and reported “at least 7.4 million newly tree-covered acres.” The NYT article revealed that this large-scale re-greening was not due to expensive tree-planting projects, but was the result of farmers protecting and managing young trees that regenerated on their cultivated land.

This re-greening did not happen everywhere. It was observed in particular in dryland regions with high population densities. Life in dryland areas presents many challenges, and farmers and decision makers are continuously searching for ways to restore their resilience and agricultural productivity.

blog post

This post is the third installment of WRI’s blog series, “Creating a Sustainable Food Future.” The series explores strategies to sustainably feed 9 billion people by 2050. All pieces are based on research being conducted for the 2013-2014 World Resources Report.

An amazing 24 percent of all food calories produced today go uneaten. Reducing this loss and waste is a critical step toward generating enough food for a population set to reach more than 9 billion by 2050.

Fortunately, there are low-cost methods that can begin saving food immediately in both the developing and the developed world. WRI’s new working paper, Reducing Food Loss and Waste, identifies a number of these strategies. Some methods cut loss “close to the farm,” while others reduce waste “close to the fork.”

Reducing Food Loss Close to the Farm

Improved storage methods

Simple, low-cost storage methods can drastically cut food loss, especially for small-scale farmers in the developing world, who frequently lose food to factors like pests, spoilage, and transportation damage. For example, a system developed by researchers at Purdue University in which grain is stored in three interlocking plastic bags locks out pests and keeps grain fresh for months. The Food and Agriculture Organization has built more than 45,000 small, metal storage silos—just big enough for use by a single farmer—in 16 different countries. These silos have cut food loss during the storage phase to almost zero. Even using a plastic crate instead of a plastic sack during transport can cut loss dramatically by preventing bruising and squashing.

blog post

This post is the second installment of WRI’s blog series, “Creating a Sustainable Food Future.” The series explores strategies to sustainably feed 9 billion people by 2050. All pieces are based on research being conducted for the 2013-2014 World Resources Report. Look for the next installment tomorrow, which will highlight a number of solutions to reduce food loss and waste.

The world produces about 4 billion tons of food per year, or about 6 quadrillion calories. That’s a large amount, but what’s really shocking is that nearly one-quarter of these calories go uneaten.

This food is lost or wasted in a number of ways. It might rot in the fields, get eaten by pests in storage, or be thrown away by a grocer or consumer, just to name a few. It’s a problem that must be mitigated: The world will need about 60 percent more calories per year by 2050 in order to adequately feed the projected population of more than 9 billion people. WRI’s new working paper, Reducing Food Loss and Waste, shows that cutting current rates of food loss and waste in half would reduce the size of this food gap by about 22 percent.

The new paper, part of the ongoing 2013-2014 World Resources Report: Creating a Sustainable Food Future working paper series, looks at the scale of the food loss and waste challenge and examines how we as a global community can start tackling this issue. The paper and tomorrow’s blog post explore a number of practical, affordable strategies for governments, businesses, and households to reduce their loss and waste immediately.

But first, it’s important to understand the extent of the problem. Here are several facts and figures that reveal just how much food the world loses and wastes:

blog post

Agriculture is a major actor in spurring global climate change. The sector is already responsible for at least 10-12 percent of global greenhouse gas (GHG) emissions, and agricultural emissions are expected to increase by more than 50 percent by 2030.

Mitigating agricultural emissions, then, could go a long way toward mitigating global climate change. The Greenhouse Gas Protocol is currently developing an Agricultural Guidance to help companies measure and reduce their agricultural emissions. We’ve just released a second draft of the Guidance for open comment period, which will run until May 31, 2013.

Key Challenges to Measuring Agricultural Emissions

Reporting agricultural emissions in GHG inventories is a decidedly complex endeavor, which can hinder reduction efforts. For example, agricultural emissions are strongly affected by weather and are therefore often calculated with a large amount of uncertainty. This ambiguity makes it challenging to set and track progress toward reduction targets. The carbon stored in biomass and soils can often be emitted into the atmosphere, making it imperative that companies do not over- or under-count the impact of farming practices on stored carbon. And companies vary widely in how they control different parts of agricultural supply chains—such as commodity production, processing, and retail —so it’s difficult to maintain consistency in how inventories are reported.

Pages

Stay Connected