You are here


Today marks the 20th anniversary of the first World Water Day, an international celebration designed to draw attention to the importance of freshwater resources. However, for a large and growing proportion of the world’s population, every day is a World Water Day. Difficult, complex water challenges including drought, groundwater depletion, pollution, and clean drinking water availability are growing in urgency and seriousness all around the world. Some even argue that we should boycott World Water Day – that our water problems are too serious to try and confine to a single day.

Although it’s true that we must keep water in mind during the other 364 days of the year, World Water Day can be useful. It helps raise awareness and serves as an annual reminder of the water problems we must collectively solve. Plus, picking a single theme – this year’s is cooperation – helps break down a very complex topic into more accessible, comprehensible pieces.

In keeping with the theme of helping make complex issues more approachable and understandable, WRI is marking this year’s World Water Day by launching the first in a new series of videos we’re calling “What’s the Big Idea?” These brief videos will feature WRI staff members explaining some of the complex, global challenges we are working to understand and solve. Our first “What’s the Big Idea?” video explains the concept of water risk and the array of challenges it poses. We also highlight a potential solution: WRI’s Aqueduct mapping tool, which helps companies, investors, governments, and others better understand and manage their water risks.

[youtube I80-UpaCsT8]

In January, Brian Richter, director of freshwater strategies at The Nature Conservancy, spelled out four water resolutions through a thought-provoking series of blog posts. One of those resolutions was to better understand and communicate the differences between water use and water consumption. This is a particularly important issue, as there has been a lot of discussion lately about water scarcity, water stress, and the risks associated with them.

So what do ”water use” and “water consumption” mean?

  • “Water use” describes the total amount of water withdrawn from its source to be used. Measures of water usage help evaluate the level of demand from industrial, agricultural, and domestic users. For example, a manufacturing plant might require 10,000 gallons of freshwater a day for cooling, running, or cleaning its equipment. Even if the plant returns 95 percent of that water to the watershed, the plant needs all 10,000 gallons to operate.

  • “Water consumption” is the portion of water use that is not returned to the original water source after being withdrawn. Consumption occurs when water is lost into the atmosphere through evaporation or incorporated into a product or plant (such as a corn stalk) and is no longer available for reuse. Water consumption is particularly relevant when analyzing water scarcity and the impact of human activities on water availability. For example, irrigated agriculture accounts for 70 percent of water use worldwide and almost 50 percent of that is lost, either evaporated into the atmosphere or transpired through plant leaves.

This post was co-written with James Mulligan, Executive Director at Green Community Ventures.

Natural ecosystems provide essential services for our communities. Forests and wetlands, for example, filter the water we drink, protect neighborhoods from floods and droughts, and shade aquatic habitat for fish populations.

While nature provides this “green infrastructure,” water utilities and other decision-makers often attempt to replicate these services with concrete-and-steel “gray infrastructure”—usually at a much greater cost. Particularly where the equivalent natural ecosystems are degraded, we build filtration plants to clean water, reservoirs to regulate water flow, and mechanical chillers to protect fish from increasing stream temperatures. And even though healthy ecosystems can reduce the operational costs of these structures, investing in restoring or enhancing various types of green infrastructure is rarely pursued—either as a substitute for or complement to gray infrastructure.

Despite America’s history of reliance on gray infrastructure, now is a critical time to tip the scales in favor of a green infrastructure approach to water-resource management. Investing in the conservation and improved management of natural ecosystems to secure and protect water systems can keep costs down and create jobs. Green infrastructure can also provide a suite of co-benefits for the air we breathe, the places we play, the wildlife we share our landscapes with, and the climate we live in.

Aqueduct Metadata Document: Mekong River Basin Study

The Mekong River Basin (MRB) Study provides details of the data, sources, methodology, and maps for 14 water-related indicators across the Mekong River Basin in Southeast Asia. The MRB Study is primarily designed for research organizations for analysis and research purposes.

Water supply and availability could be the most pressing problem restricting China’s economic growth in the next 10-15 years, according to a new report by the Asian Development Bank. Not only are water resources limited (only about 30 percent of total water resources are available for use), but many surface and groundwater sources are suffering from severe pollution.[^1] The Chinese government is now looking to invest in new ideas to improve water quality and supply, and WRI is using its water quality trading expertise to explore the potential of market-based methods to improve water quality and increase the supply of clean water from Chao Lake, the fifth-largest lake in China.


Stay Connected